Empirical assessment of dynamic hamstring function during human walking.
نویسندگان
چکیده
The hamstrings are often associated with the development of crouch gait, a fatiguing form of walking characterized by excessive hip flexion, knee flexion and ankle dorsiflexion during stance. However, recent studies have called into question whether abnormally active hamstrings induce the limb to move into a crouch posture. The purpose of this study was to directly measure the influence of the hamstrings on limb posture during stance. Nineteen healthy young adults walked on an instrumented treadmill at their preferred speed. A 90 ms pulse train was used to stimulate the medial hamstrings during either terminal swing or loading response of random gait cycles. Induced motion was defined as the difference in joint angle trajectories between stimulated and non-stimulated strides. A dynamic musculoskeletal simulation of normal gait was generated and similarly perturbed by increasing hamstring excitation. The experiments show that hamstring stimulation induced a significant increase in posterior pelvic tilt, knee flexion and ankle dorsiflexion during stance, while having relatively less influence on the hip angular trajectory. The induced motion patterns were similar whether the hamstrings were stimulated during late swing or early stance, and were generally consistent with the direction of induced motion predicted by gait simulation models. Hence, we conclude that overactive hamstrings have the potential to induce the limb to move toward a crouch gait posture.
منابع مشابه
Energy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملAssessment of Dynamic Stability During Walking in Below-knee Amputation
Purpose: Dynamic stability reduces in patients with unilateral amputation; so, it is important to recognize changes in balance during walking. This study aimed to investigate the dynamic stability of unilateral below-knee amputation during walking. Methods: The present study was a quasi-experimental study, in which 10 patients with knee amputation and 10 healthy young people participated. The ...
متن کاملElectromyography activity across gait and incline: The impact of muscular activity on human morphology.
The study of human evolution depends upon a fair assessment of the ability of hominin individuals to gain access to necessary resources. We expect that the morphology of extant and extinct populations represents a successful locomotory system that allowed individuals to move across the environment gaining access to food, water, and mates while still maintaining excess energy to allocate to repr...
متن کاملComparison of clinical and dynamic knee function in patients with anterior cruciate ligament deficiency.
BACKGROUND Whether passive measures of isokinetic muscle strength deficits and knee laxity are related to the dynamic function of the anterior cruciate ligament-deficient knee remains unclear. HYPOTHESES Arthrometer measurements are not predictive of peak external knee flexion moment (net quadriceps muscle moment), isokinetic quadriceps muscle strength correlates with peak external knee flexi...
متن کاملDynamic analysis of above-knee amputee gait.
BACKGROUND It is important to understand the characteristics of amputee gait to develop more functional prostheses. The aim of this study is to quantitatively evaluate amputee gait by dynamic analysis of the musculoskeletal system during level walking and stair climbing. METHODS Dynamic analysis using gait analysis, electromyography and musculoskeletal modeling for above-knee amputees (n=8) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 46 7 شماره
صفحات -
تاریخ انتشار 2013